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Tandem mass spectra contain noisy peaks which make peak picking for peptide identification

difficult. Moreover, all spectral peaks can be shifted due to systematic measurement errors. In this

paper, a novel use of an isotope pattern vector (IPV) is proposed for denoising and systematic

measurement error prediction. By matching the experimental IPVs with the theoretical IPVs of

candidate fragment ions, true ionic peaks can be identified. Furthermore, these identified exper-

imental IPVs and their corresponding theoretical IPVs are used in an optimization process to predict

the systematic measurement error associated with the target spectrum. In return, the subsequent

spectral data calibration based on the predicted systematic measurement error enhances the data

quality. We show that such an integrated denoising and calibration process leads to significantly

improved peptide and protein identification. Different from the commonly employed chemical

calibration methods, our IPV-based method is a purely computational method for individual spectra

analysis and globally optimizes the use of spectral data. Copyright # 2009 John Wiley & Sons, Ltd.
Peptide and protein identification by peptide mass fingerprint-

ing (PMF) and tandem mass spectra (MS/MS) plays an

indispensable role in current proteomic research.1–3 Despite

many great efforts,4–11 obtaining reliable identification

results computationally remains a challenging problem

due to two major sources of complexities.3 One complexity

relates to the issues in protein database searching such as

unexpected peptide modifications, limited databases, and

non-specific cleavages, all of which require more efficient

identification algorithms and biological knowledge. The

other complexity is due to the spectral data being usually

blended with noise and often shifted because of unknown

systematic measurement errors. In the literature, most of the

efforts are to resolve the first source of complexities, while

the second is much less studied. Nevertheless, effective

denoising and calibration adjusting the systematic measure-

ment error are important for peptide and protein identifi-

cation, and they deserve equal research. In this paper, we

propose a novel use of an isotope pattern vector (IPV) for

denoising and systematic measurement error prediction. We

demonstrate using real MS/MS datasets that the calibrated

spectra by our method lead to significantly improved

peptide and protein identification results.
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A typical MS/MS spectrum contains hundreds to

thousands of mass-to-charge (m/z) peaks. Among these

peaks, only tens are true peaks that come from common

types of ionic peptide fragments, which are useful for

peptide (protein) identification. The rest of them are noise

peaks. Without an effective denoising process, noise peaks

can impose a heavy computational burden for peptide

identification (through either database search or de novo

sequencing). Furthermore, they will also lead to many false

peptides. To make things even worse, the systematic m/z

measurement error, if not removed, will shift all the true m/z

peaks, imposing a bigger challenge to the de novo sequencing

algorithm and the database search. In severe cases, it can

force the database search to have a large tolerance threshold,

and thus degrades a highly accurate MS/MS instrument to a

medium accurate one.12

To date, spectral data denoising and systematic measure-

ment error correction have been well recognized as two key

steps to improve thepeptideandprotein identification.Several

experimental and computational methods have been pro-

posed for these purposes. Roughly, existing denoising

methods can be categorized as threshold filtering, de-isotoping

and denoise transforming. Among these three categories,

threshold filtering is probably the most straightforward. For

instance,somemethodsselectonlypeakswith intensitiesgreater

than a given threshold4 or a computed threshold13,14 for peptide

identification; theotherselectsonlyaspecificnumberof themost

intensive peaks in the specified m/z intervals.15 Since the

intensity is not the fundamental attribute of true peaks, these
Copyright # 2009 John Wiley & Sons, Ltd.
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threshold filtering methods cannot thoroughly remove the

noise,butmaymisstruepeakswithlowintensities.De-isotoping

methodsallassumeanelemental composition(C6H5NO)n
14,16or

(C4.9384H7.7583N1.3577O1.4773S0.0417)n
17–19 for an observed peak

with mass M. Based on the assumed elemental composition,

they can calculate the theoretical distribution of the isotopic

peaks and identify some of the true peaks. However, in general,

thesemethodsdonot validatewhether or not the basepeakM is

true, andtheassumedelemental compositioncouldbe toocrude

to identify the complex convolution of isotopes. Consequently,

the de-isotoping methods would inevitably miss a certain

portionof fragment ions.Otherdenoisingmethodsemploywell-

known data transformation techniques such as wavelets.20 The

success of these methods heavily relies on the internal

parameters such as wavelet base functions, order, and the level

of decomposition. In addition, some commercial software, such

as ProteinLynx Global Server,21 supply certain denoising and

de-isotoping functionalities. But they canonlydealwith rawbut

not centroid spectral data.

Besides the noise issue, spectral data analysis is also

confronted by the systematic measurement errors. These

errors are caused during measurement by environmental

factorssuchastemperature.Theconsequence is thatall the true

peaks in the spectra are shifted, which make the mismatches

between true peaks and theoretical peaks too big for peptide

identification. For example, it is observed that even with a

careful 5-ppm-accuracy instrument-wise calibration, the

systematic measurement errors of many time-of-flight (TOF)

spectra could still be as high as 100ppm, which makes the

peptide identificationproblemmorechallenging.Several error

correction (after instrument-wise calibration) methods have

been developed, including internal standard reference

(ISR),22–24 external standard reference (ESR),25–27 and compu-

tational methods.28–30 Essentially, ISR adds certain reference

materials with known quality into samples, and estimates the

spectral measurement error using the difference between the

measuredmass and the theoretical mass of the references. ISR

is in general accurate, but there is a risk of possible cross-

pollution between references and samples, and high-intensity

reference peaks can depress the true peaks. ESRmeasures the

references and samples independently, and estimates the

sample systematic measurement error using the reference

systematic measurement error. ESR overcomes the above

two disadvantages of ISR, but its error prediction accuracy is

generally lower than ISR. One reason is that it is difficult to

tune the two experimental conditions to be identical.

Computational error correction methods do not depend

on extra experiments. For example, commonly occurring

background peptides from keratins or trypsin autolysis

products have been proposed to be used similarly as the

references in the ISR methods for error prediction.28,29

Nonetheless, it is worth pointing out that the commonly

occurring products may not occur in every spectrum. A

result-drivenmethodhas beenproposed to first analyze a set

of spectra, and then to pick up highly reliable identification

results as references to estimate the measurement error

distribution for all the spectra.30 This method highly

depends on the reliable identification results and the

estimated measurement error distribution might not

represent the true error in individual spectra.
Copyright # 2009 John Wiley & Sons, Ltd.
The drawbacks and the resultant performance limitation of

existing methods motivated us to develop a novel use of

isotope patterns for denoising and systematic measurement

error correction purposes. Our way of using isotope patterns,

to be presented in detail next, does not need to set up peak

intensity thresholds or any other parameters, neither does it

pre-assume any elemental composition for the ionic peaks.

On the other hand, our method computationally predicts the

systematic measurement errors for individual spectra

through an optimization process to optimize globally the

use of spectral data.

Most amino acids are composed of five elements of

hydrogen (H), carbon (C), nitrogen (N), oxygen (O), and

sulfur (S). All these five elements have stable isotope patterns

in nature. For example, the two most important isotopes of

hydrogen are H and D, which have relative abundance of

99.985% and 0.015%, respectively; the three most important

isotopes of oxygen are 16O, 17O, and 18O, which have relative

abundance of 99.759%, 0.037%, and 0.204%, respectively.

During the mass spectral data analysis, when the selection

window in the mass spectrometer is properly set, the

stabilities of elemental isotope patterns ensure that: (1) the

isotopic peaks associated with a peptide or a fragment ion

will co-occur with its monoisotopic peak in the same

spectrum, and (2) the isotopic peaks will occur in a stable

profile also. Such a co-occurrence can be used as a strong

evidence that one ion is present in the spectrum. Further-

more, the elemental composition of the ion can be predicted

using the stable isotope profile, as we will show in the

following. These elemental compositions are then used to

calculate the theoretical masses for the corresponding ions,

respectively. Subsequently, the differences between exper-

imental masses and their corresponding theoretical masses

are used in a least-squares fit to best approximate the

systematic measurement error for the target spectrum. With

the estimated systematic measurement error, the spectrum is

re-calibrated andwe show that such re-calibrated spectra can

lead to significantly improved peptide identification result.

In the next section, we present the concept of the isotope

pattern vector (IPV) and the novel way to use IPV for

denoising and systematic measurement error prediction. In

the Results section, we demonstrate the success of our

method by showing that, on all three experimental MS/MS

datasets we tested, the calibrated spectra lead to significantly

better peptide and protein identification results.
EXPERIMENTAL

Isotope pattern vector (IPV)
Given an ion P, let M denote its monoisotopic mass, and let

Mk denote its k-th isotopic mass, with k extra neutrons, for

k¼ 1, 2, . . .. We define the Isotope Pattern Vector (IPV) to

digitally describe the isotope profile of ion P as IPV¼ (M, T1,

T2, . . .), where Tk (k¼ 1, 2,. . .) is the relative abundance ofMk

with respect to M.

Theoretical IPV (tIPV)
Consider the abundance of the isotopes and the compu-

tational complexity and accuracy, we define the theoretical
Rapid Commun. Mass Spectrom. 2009; 23: 3448–3456
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dm ¼ n1 � 12þ n2 � 1:0078þ n3 � 14:0030þ n4 � 15:9972
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IPV of ion P, tIPV¼ (Mt, T1, T2), using only its first two

isotopic masses. Here, Mt is the theoretical monoisotopical

mass of the ion, and T1, T2 are the relative abundances of the

first and second isotopical masses, M1 and M2, with respect

to Mt. When ion P has a formula Cn1Hn2Nn3On4Sn5, its

tIPV¼ (Mt, T1, T2) is calculated as follows:
Mt ¼ n1 � 12þ n2 � 1:0078þ n3 � 14:0030þ n4 � 15:9972
þ n5 � 31:9721;

T1 ¼ n1 � qC þ n2 � qH þ n3 � qN þ n4 � qO1 þ n5 � qS1;
T2 ¼ n4 � qO2 þ n5 � qS2 þ 1

2T
2
1 � 1

2 ðn1 � q2C þ n2 � q2H
þ n3 � q2N þ n4 � q2O1 þ n5 � q2S1Þ;

þ n5 � 31:9721�Me;

d1 ¼ n1 � qC þ n2 � qH þ n3 � qN þ n4 � qO1 þ n5 � qS1 � R1;

d2 ¼ n4 � qO2 þ n5 � qS2

� 1

2
n1 � q2C þ n2 � q2H þ n3 � q2N þ n4 � q2O1 þ n5 � q2S1
� �

þ ðn1 � qC þ n2 � qH þ n3 � qN þ n4 � qO þ n5 � qSÞ

� R1 �
1

2
R2
1 � R2 þ

1

2
d21:
where qC, qH, qN are the relative abundances of 13C to 12C, D

to H, and 14N to 15N; and qO1, qO2 (qS1, qS2) are the relative

abundances of 17O to 16O and 18O to 16O (33S to 32S and 34S to
32S), respectively.
A ¼
12 1:0078 14:0030 15:9972 31:9721
qC qH qN qO1 qS1
qCR1 � 1

2 q
2
C qHR1 � 1

2 q
2
H qNR1 � 1

2 q
2
N qO2 þ qO1R1 � 1

2 q
2
O1 qS2 þ qS1R1 � 1

2 q
2
S1

2
4

3
5 and B ¼

�Me

�R1

� 1
2R

2
1 � R2

2
4

3
5:
Experimental IPV (eIPV)
In an MS/MS spectrum, peaks are characterized as (m/z,

intensity) pairs, where m/z is the mass-to-charge of a peptide

or fragment ion (x-axis) and intensity represents the absolute

abundance of the ion (y-axis). For a triplet of isotopic peaks

(p0, p1, p2) associated with an ion P, where pk¼ (MZk, Ik) for

k¼ 0, 1, 2, their (common) charge state z can be calculated

from the distance between the values ofMZk. We collect such

triplets from the spectrum, allowing p2 (or both p1 and p2) to

be missing. For each triplet, we calculate the experimental

monoisotopic mass of the ion as Me¼MZ0
� z –MH

� (z – 1),

where MH¼ 1.0078 is the proton mass. We define the

experimental IPV (eIPV) for this ion as eIPV¼ (Me, R1,

R2)¼ (Me, I1/I0, I2/I0). Here I1/I0, I2/I0 measures the relative

abundance of the first and second isotopic ion with respect to

the monoisotopic ion, respectively.
Matching eIPV and tIPV
Given a pair of an eIPV¼ (Me, R1, R2) and a tIPV¼ (Mt, T1,

T2), their distance is defined as d(eIPV, tIPV)¼ ((Me –

Mt)
2þ (R1 –T1)

2þ (R2 –T2)
2)1/2. Using this Euclidean dis-

tance measure, an eIPV can be used for both denoising and

the systematic measurement error prediction purposes.

Essentially, an eIPV comes more likely from an ion than

from noise if it matcheswell with the ion’s tIPV. Therefore, its

distances to theoretical IPVs can be used to remove noise

peaks. Furthermore, one can predict the elemental compo-

sition of the ion(s) from the match between eIPV and tIPV.

Subsequently, the systematic measurement error in the

spectrum can be estimated by comparing the measured

masses from the spectral peaks and the theoretical masses

from the elemental composition.
Copyright # 2009 John Wiley & Sons, Ltd.
To predict the elemental composition X¼ (n1, n2, n3, n4,

n5)
T from the matched eIPV¼ (Me, R1, R2) and tIPV¼ (Mt, T1,

T2), let dm¼Me –Mt, d1¼R1 –T1, and d2¼R2 –T2.We have the

following equations:
We can approximate dmd1d2½ � ¼ AX þ B by omitting the

residual 1
2 d

2
1 from the equation for d2, where A is a constant

matrix and B is a constant vector as follows:
It follows that d2(eIPV, tIPV)¼ (dm, d1, d2)
� (dm, d1, d2)

T¼XT

AT A Xþ 2BT A XþBT B. This way, searching for the tIPV

becomes an optimization problem to minimize d2(eIPV,

tIPV). This minimization problem to find the best-fit

elemental composition can be solved by some search

methods, as reported previously.31

IPV-based denoising
The idea underlying the IPV-based denoising is that true

isotopic peaks generally cluster together and have a stable

distribution, while noise peaks occur rather randomly and

independently. There are two main challenges: (1) to deter-

mine the tIPV upon observing an eIPV and (2) to separate

overlapping peaks due to the mass difference between ions

that matches to the mass difference between isotopes.

To solve the first problem, we follow the work done

previously31 to calculate the expected tIPV from the observed

monoisotopic mass Me and the statistical distribution of

theoretical ions from a non-redundant database. For this

purpose, we calculate the minimum, the mean, and the

maximum values for T1 and T2 in tIPV for each ion. Then the

normalized deviations from R1 (defined as min{jR1�T1,minj,
jR1�T1,maxj}/T1,meanwhenT1,min�R1�T1,max, or 0 otherwise)

and R2 (similarly defined) are calculated, respectively. These

values are used to define the distance from the eIPV to the tIPV.

Overlapping peaks are difficult to separate.We resolve this

issue by following a previously reported method.32 Essen-

tially, we summarize the overlapping peaks into several

predominant types, and modify the above definitions of

normalized deviations. For example, the most important

type of overlapping peaks is the isotopic peaks of two of the

same charged ions with 1 u mass difference. In our past

experience, we found that such pairs of ions are often the

water-loss and ammonia-loss ions of a common ion.

Complex types of overlapping peaks could involve different-

charged ions and even noise peaks.
Rapid Commun. Mass Spectrom. 2009; 23: 3448–3456
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IPV-based systematic measurement error
prediction
The spectral data measurement error can normally be

divided into two parts: random error and systematic error.

Random errors follow a zero-mean normal distributionwhile

the systematic errors are determined by the data measure-

ment mechanism of the instrument. For example, the

systematic measurement error of a TOF instrument can be

expressed as a polynomial function (most of the time, a linear

function is typically sufficient) in the theoretical masses of

ions, and the ion-trap and Fourier transform ion cyclotron

resonance (FT-ICR) instruments have some other specific

error functions. Determination of the parameters in these

error functions is rather challenging but certainly very

important for spectral data recalibration. In this work, we

focus on TOF spectra, and approximate the data measure-

ment error using a linear distribution of systematic errors

and a normal distribution of random errors. That is, Me –

Mt¼ a �Mtþ e, where Me is the observed mass, Mt is the

theoretical mass, a is a constant (called the relative systematic

measurement error), and e�N(0, s2). Our goal is to estimate the

value of a for each spectrum by using the spectrum alone.

Following our IPV-based denoising step, we identify a

series of eIPVs generated from true ions. For each of these

experimental monoisotopic ion masses, we associate it with

the predicted theoretical monisotopic ion mass through the

optimization process described above. In this way, we have a

series of pairs (Me,Mt). The relative systematic measurement

error a is determined by solving the following minimization

problem: minimize
Pk

i¼1 ððMe;i �Mt;iÞ � a �Mt;iÞ2, where Me,i

andMt,i are the i-th observed monoisotopic ion mass and the

corresponding theoretical one, respectively. We use a least-

squares fit method to solve this minimization problem.

Datasets
We used three experimental datasets to test our IPV-based

method. Dataset A can be downloaded,33 which includes 46

195 .dta files. These spectra are produced after analyzing five

trypsin-digested gel regions, representative of the yeast

proteome in triplicate (i.e., three samples, denoted as a, b,

and c) by nanoscale microcapillary LC/MS/MS using

quadrupole time-of-flight (Q-TOF) mass spectrometers.

These 15 slices are labeled as 1a, 1b, 1c, 3a, 3b, 3c, 5a, . . .,

9a, 9b, 9c, respectively. Dataset A is used to demonstrate the

extent of improvement in peptide and protein identification

through the IPV-based denoising process.

Dataset B contains 52 high-quality Q-TOF spectra with

tryptic digestion peptides (whose C-terminus is either R or

K). This dataset has been studied by Taylor and Johnson.8

Dataset C contains 114 tandem spectra selected from the

production of a Q-TOF Ultima Global spectrometer for
Table 1. Mascot search results on dataset A using the original an

Sample

Original data IPV-processed data

Spectra Peptides Proteins Spectra Peptides Protein

a 3167 2777 461 3557 3140 503
b 3011 2597 456 3373 2950 491
c 2798 2446 453 3000 2640 468

Copyright # 2009 John Wiley & Sons, Ltd.
tryptic digestion peptides of eight proteins: Myoglobin

(horse skeletal muscle), BSA (bovine serum albumin), fetuin

(fetal calf serum type III), lysozyme (egg white), alpha-

lactoalbumin (bovine), BCA (bovine milk), phosvitin (egg

yolk), and ribonuclease B (bovine pancreas).32 All three

datasets were used to illustrate the performance of IPV-based

systematic measurement error prediction.
RESULTS AND DISCUSSION

We use the peptide and protein identification results to

demonstrate the performance of our IPV-based spectral data

denoising and systematic measurement error prediction. We

compare our results with the results achieved by standard

runs of Mascot (version 2.1.02).7 Mascot fromMatrix Science

is one of the most popular and powerful search engines that

use mass spectral data to identify proteins from primary

sequence databases.

IPV-based denoising results
On dataset A, Mascot was used to interpret the downloaded

data (called original data). Our IPV-based denoising method

was applied to the original data to identify true peaks from

fragment ions. The identified peaks form the IPV-processed

data, which was also fed to Mascot for peptide identification.

To estimate the false positive rate of the peptide-spectral

matches (PSMs), we applied Mascot to search against a

composite target-decoy database.34,35 This database contains

all yeast protein sequences in both forward and reverse

orientations. The precision of the search is defined as the

number of true positive PSMs (TP) divided by the sum of TP

and the number of false positive PSMs (FP), i.e., precision¼
TP/(TPþ FP). The Mascot search parameters were set to the

same as Elias et al.34 and a similar criterion for score filtering

was set to achieve around 99% precision. Table 1 collects the

numbers of spectra, peptides, and proteins that are selected/

identified by Mascot using the original data and using the

IPV-processed data, respectively. Keeping the similar �1%

false positive rate, there are 12.31%, 12.02% and 7.22% more

spectra in the three samples, respectively, confidently

interpreted by Mascot on the IPV-processed data than on

the original data. Consequently, both protein and proteome

coverages are improved after applying IPV-based denoising

process (Table 1). Specifically, there are on average 11.64%

more peptides and 6.56% more proteins confidently identified

by Mascot after applying the IPV-based denoising process.

Comparing the two sets of Mascot search results for the

three samples a, b, and c, there are 2792, 2634, and 2365

common spectra confidently interpreted by Mascot, respect-

ively. On these common spectra, an average of 15.85% (41.45

vs. 35.78), 6.89% (41.24 vs. 35.28), and 13.04% (38.98 vs. 34.89)
d the IPV-processed data

Intersection Union

s Spectra Peptides Proteins Spectra Peptides Proteins

2792 2469 423 3932 3448 541
2634 2304 409 3750 3243 538
2365 2083 402 3433 3003 519

Rapid Commun. Mass Spectrom. 2009; 23: 3448–3456
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Figure 1. The true RME distribution (top) and the distribution

of their difference to the IPV-based predicted RMEs (bottom)

on dataset B.

Figure 2. The true RME distribution (top) and the distribution

of their difference to the IPV-based predicted RMEs (bottom)

on dataset C.
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increase in Mascot scores are achieved on three samples, res-

pectively, after the IPV-based denoising process. That is, the

Mascot search results on these common spectra are signifi-

cantlymore reliable after the spectra are denoised byourmethod.

There are 375, 377, and 433 original spectra in the three

samples, respectively, interpreted by Mascot but not after

being denoised by the IPV; in the opposite direction, there are

765, 739, and 635 original spectra, respectively, which cannot

be interpreted by Mascot but are interpreted after the IPV-

based denoising. The distributions of Mascot scores on the

identified peptides for the two sets of spectra are similar. The

mean scores and standard deviations are (25.30, 8.56) and

(25.98, 8.93), respectively. These results imply that the

reliability of the Mascot search on these two sets of spectra is

very close. Further statistics show that the average peptide

lengths on these two sets are both 13; nevertheless, the

number of peptides longer than 13 identified using the IPV-

processed data is much larger than that using the original

data (1330 vs. 657). In addition, there are a total of 772

precursors (parent peptides) with mass larger than 2100 Da

interpreted. Among them, 276 (35%) large peptides could not

be interpreted by Mascot without the IPV-based denoising.

These results suggest a strong ability of IPV-based denoising

for identifying larger peptides to provide more sequence

information for protein identification.

We also compared the average numbers of peaks in spectra

that can be interpreted by Mascot. For the spectra that can be

interpreted using both the original data and the IPV-

processed data, the average number of peaks is 530; for

the spectra that can be interpreted using the original data

only, the average number of peaks is 364; for the spectra that

can be interpreted using the IPV-processed data only, the

average number of peaks is 623. These numbers indicate that

many spectral peaks would not be interpreted by Mascot

without the IPV-based denoising process due to the rich

isotopic information and the abundance of noise peaks.

However, spectra with much fewer peaks are normally lack

of isotopic information, and they would better be interpreted

directly by Mascot.

Combining the two sets of identification results by Mascot

on dataset A using both the original data and the IPV-

processed data, there are 11 115 spectra interpreted (24.1% of

the total), 9694 peptides identified, and 1598 proteins

identified. The respective increases for the three samples

from using the original data alone are 23.8%, 24.0%, and

16.6%. It is worth pointing out that there are still 75.9%

spectra in dataset A not interpreted even with the IPV-based

denoising process. Besides post-translational modifications,

we suspected that the systematic measurement errors in

these spectra are larger than the Mascot search parameter of

0.2 u. Our next section of systematic measurement error

prediction results confirmed this.

IPV-based systematic measurement error
prediction and recalibration results
In this section, we first report the accuracy of systematic

measurement error prediction by the IPV-based process, and

then examine the subsequent improvement on peptide and

protein identification from the data recalibration. In sys-

tematic measurement error prediction, we use a linear
Copyright # 2009 John Wiley & Sons, Ltd.
function to approximate the error distribution, and our goal

is to predict the relative measurement error (RME). For each

spectrum in the three datasets that can be reliably interpreted

byMascot using the original data, we have both the observed

mass and the theoretical mass for an ion. These masses are fit

to a least-squares method for the minimization problem to

obtain the RME. Such an obtained RME is taken as the true

RME of the spectrum.

Without running Mascot, we can apply the IPV-based

method to predict the systematic measurement error the

spectrum. The achieved RME is the predicted RME of the

spectrum. The differences between the predicted RMEs and

the true RMEs on datasets B and C are plotted in Figs. 1 and 2
Rapid Commun. Mass Spectrom. 2009; 23: 3448–3456
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Figure 3. The distribution of the true RMEs (left) and the distribution of the difference between the IPV-based

predicted RMEs and the true RMEs (right), on dataset A.

IPV-based MS/MS data calibration for peptide/proteins 3453
(bottom), respectively. In summary, there are 52 spectra in

dataset B and the true RME range is (�56.226, 111.442) ppm

(Fig. 1, top). The average difference between the predicted

and the true RMEs is 9.604 ppm. Dataset C contains 114

spectra, whose true RME distribution is relatively more

complex. The true RME range on dataset C is (�53.197,

103.114) ppm (Fig. 2, top), and the average difference

between the predicted and the true RMEs is 10.279 ppm,

slightly worse than dataset B. Nevertheless, the proportion of

spectra whose RME difference is less than 30 ppm is 89.92%,

and the proportion of spectra whose RME difference is less

than 40 ppm increased to 94.96%.
Figure 4. Separated in slices 1a–9a: the true RME distribution in

spectra each containing at least 300 peaks (second column), and th

each containing at least 300 peaks (third column).

Copyright # 2009 John Wiley & Sons, Ltd.
For dataset A, the working condition of the instrument for

collecting all spectra in three samples was reported stable.

Therefore, their systematic measurement errors are expected

to be stable too and to follow a normal distribution. Themean

of this normal distribution would reflect the error level of the

instrument. We selected 3427, 3244, and 2882 spectra from

the three samples, respectively: (1) they are reliably

interpreted by Mascot using the original data and (2) each

containing more than five matched fragment ions. Using the

observed and the theoretical masses of the matched ions,

we calculated the true RME for each of these spectra. These

true RMEs are plotted in Fig. 3 (left). They are also plotted in
all the spectra (first column), the true RME distribution in the

e distribution of the IPV-based predicted RMEs in the spectra
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Figure 5. Separated in slices 1b–9b: the true RME distribution in all the spectra (first column), the true RME distribution in the

spectra each containing at least 300 peaks (second column), and the distribution of the IPV-based predicted RMEs in the spectra

each containing at least 300 peaks (third column).
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the first column of Figs. 4–6, separated into 15 slices. Next, we

ran our IPV-basedmethod on spectra containing 300 peaks or

more (there are 2499, 2461, and 2002 such spectra in the three

samples, respectively) to their respective systematic
Figure 6. Separated in slices 1c–9c: the true RME distribution in

spectra each containing at least 300 peaks (second column), and th

each containing at least 300 peaks (third column).

Copyright # 2009 John Wiley & Sons, Ltd.
measurement error. These predicted RMEs are plotted in

the third column of Figs. 4–6, separated into 15 slices. The

true RMEs for this subset of spectra are also plotted, for

comparison purposes, in the second column of Figs. 4–6.
all the spectra (first column), the true RME distribution in the

e distribution of the IPV-based predicted RMEs in the spectra

Rapid Commun. Mass Spectrom. 2009; 23: 3448–3456

DOI: 10.1002/rcm



Figure 7. The cumulated accuracies of IPV-based systematic measurement error prediction.

IPV-based MS/MS data calibration for peptide/proteins 3455
It can be seen from Figs. 4–6 that the true RME

distributions in the first two columns are very similar to

each other. In fact, the average RME difference over all 15

pairs of mean RMEs is less than 2ppm. That is, the RME

distribution of the spectra with �300 peaks would largely

reflect the RME distribution of all spectra in dataset A. In this

sense, we believe it is good enough if we can accurately

predict the RME distribution of the spectra containing �300

peaks. Across all 15 pairs of means of the predicted RMEs

and the true RMEs for the spectra containing�300 peaks, the

least difference is 0.25 ppm, the largest is 28.68 ppm, and the

average is 10.11 ppm. The correlation coefficients between

the three series of 15 mean RMEs are 0.9992, 0.9943, and

0.9936, respectively.

Noticeably in Figs. 4–6, the predicted RMEs in slice 3c are

the farthest away from the corresponding true ones (the

mean difference reached the largest value of 28.68 ppm).

From the original data, we can claim that this set of spectra

probably have the lowest quality. One reason is that the

average number of peaks in the other 14 slices is 670, while in

this slice it is only 473. This suggests that our IPV-based

systematic measurement error prediction relies on more

peaks to provide sufficient isotopic information. A second

reason is the signal-to-noise ratio in slice 3c is much lower

compared to the other 14 slices.

The RMEs of individual spectra are more important for the

error distribution of a set of spectra. Individual RMEs can be

used for data recalibration for subsequent peptide and

protein identification. For each spectrum in dataset A

containing�300 peaks, we calculated the difference between

the predicted RME and the true RME. These differences are

plotted in Fig. 3 (right). The plot follows a normal

distribution N(�7.9807, 18.75662) with a normality testing

p-value less than 0.01. When separated into the three
Table 2. The Mascot peptide and protein identification results o

without and with the IPV-based spectral data calibration

Sample

P0.2 P0.3

Peptides/Proteins
Increased

Peptides/Protein

a 3140 503 47 2
b 2950 491 18
c 2640 468 68 2

Copyright # 2009 John Wiley & Sons, Ltd.
samples, the three normal distributions are N(�13.2776,

18.52112), N(�2.2252, 13.69912), and N(�8.5004, 22.11242),

respectively (all normality testing p-values less than 0.01).

Moreover, among these 6925 spectra, as shown in Fig. 7,

91.65% of them have an error difference less than 30 ppm, 95.

80% of them have an error difference less than 40ppm, and

98.02% of them have an error difference less than 50ppm.

This tells that if we use the predicted RMEs to recalibrate the

spectra, more than 95% of themwill have error distributed in

(�40, 40)ppm. Such recalibrated spectra can then be

confidently interpreted by Mascot. Compared with the first

column of Figs. 4–6 where the true RMEs are distributed in

(�90, 80)ppm, our IPV-based systematic measurement error

prediction and the subsequent recalibration have a major

impact on improving data quality.

As discussed at the end of the last section, as a large

number of spectra in dataset A (75.9% of the total) are not

confidently interpreted by Mascot even after the IPV-based

denoising process, we suspect that their systematic measure-

ment errors might exceed the predefined error ranges for

precursors and fragment ions in Mascot search, both of

which are set to 0.2 u. These two error distributions are rather

independent of each other, and we had no information on

precursors in MS/MS spectra. In the experiment, we ran our

IPV-based method to predict the systematic measurement

errors for these difficult spectra. For each of them, if the

recalibrated spectrum can be reliably interpreted by Mascot,

we subsequently estimated its measurement error for

precursors. We found that some precursor measurement

errors are close to 100ppm. This matched well with our

suspicion that the 0.2 u precursor error range in default

Mascot search is too small. Consequently, we set up more

experiments to either increase the precursor error threshold

from 0.2 u to 0.3 u, or use the IPV-based systematic
n dataset A: default or increased precursor error threshold,

Q0.2 Q0.3

s
Increased

Peptides/Proteins
Increased

Peptides/Proteins

3 64 23 86 24
7 57 56 64 55
1 56 27 123 62
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measurement error prediction to recalibrate the spectra (the

resultant data are called calibrated data). Specifically, we

compared four sets of search results: (1) keep the precursor

error threshold at 0.2 u, and the search result is denoted

as P0.2; (2) increase the precursor error threshold to 0.3 u,

denoted as P0.3; (3) keep the precursor error threshold at 0.2 u

and apply the IPV-based calibration, denoted as Q0.2; and (4)

increase the precursor error threshold to 0.3 u and apply the

IPV-based calibration, denoted as Q0.3. In the three samples,

the numbers of peptides and proteins confidently identified

in all four experiments are collected in Table 2.

The results in Table 2 show that both increasing the

precursor error threshold (to 0.3 u) and the IPV-based data

recalibration improved the peptide and protein identification

by Mascot search. In particular, the number of identified

proteins increased significantly while keeping �1% false

positive rate, possibly because more peptides are confidently

identified.More specifically, with a precursor error threshold

of 0.3 u but no IPV-based data recalibration, the numbers of

identified proteins increased 4.57%, 1.43%, and 4.49%, in the

three samples, respectively. Applying the IPV-based data

recalibration but keeping the precursor error threshold at

0.2u, the numbers of identified proteins increased 4.57%,

11.41%, and 5.77%, in the three samples, respectively. Applying

the IPV-based data recalibration and the increasing precursor

error threshold to 0.3u, the numbers of interpreted proteins

increased 4.77%, 11.20%, and 13.25%, respectively. Comparing

these numbers, one can conclude that the IPV-based systematic

measurement error prediction and the subsequent data

recalibration contribute more to the improvement of protein

identification than increasing the precursor error threshold.

Availability
The method described in this paper has been incorporated

into the program pQMass. pQMass and its documentation

are available to download.36
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